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We study the betweenness centrality of fractal and nonfractal scale-free network models as well as real
networks. We show that the correlation between degree and betweenness centrality C of nodes is much weaker
in fractal network models compared to nonfractal models. We also show that nodes of both fractal and
nonfractal scale-free networks have power-law betweenness centrality distribution P�C��C−�. We find that for
nonfractal scale-free networks �=2, and for fractal scale-free networks �=2−1/dB, where dB is the dimension
of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical
firms �N=6776�, yeast �N=1458�, WWW �N=2526�, and a sample of Internet network at the autonomous
system level �N=20566�, where N is the number of nodes in the largest connected component of a network. We
also study the crossover phenomenon from fractal to nonfractal networks upon adding random edges to a
fractal network. We show that the crossover length �*, separating fractal and nonfractal regimes, scales with
dimension dB of the network as p−1/dB, where p is the density of random edges added to the network. We find
that the correlation between degree and betweenness centrality increases with p.
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I. INTRODUCTION

Studies of complex networks have recently attracted
much attention in diverse areas of science �1–4�. Many real-
world complex systems can be usefully described in the lan-
guage of networks or graphs as sets of nodes connected by
edges �5,6�. Although different in nature, many networks are
found to possess common properties. Many networks are
known to have a “small-world” property �7–10�: despite their
large size, the shortest path between any two nodes is very
small. In addition, many real networks are scale free �SF�
�1–4,11,12�, well approximated by a power-law tail in degree
distribution, P�k��k−�, where k is the number of links per
node.

Many networks, such as the WWW and biological net-
works, have self-similar properties and are fractals �13–17�.
The box-counting algorithm �13,18� allows one to calculate
their fractal dimensions dB from the box-counting relation

NB � �B
−dB, �1�

where NB is the minimum number of boxes of size �B needed
to cover the entire network �Appendix B�. Structural analysis
of fractal networks shows that the emergence of SF fractal
networks is mainly due to disassortativity or repulsion be-
tween hubs �14�. That is, nodes of large degree �hubs� tend to
connect to nodes of small degree, giving life to the paradigm
“the rich get richer but at the expense of the poor.” To incor-
porate this feature, a growth model of SF fractal networks
that combines a renormalization growth approach with repul-
sion between hubs has been introduced �14�. It has also been
noted �14� that the traditional measure of assortativity of
networks, the Pearson coefficient r �19�, does not distinguish
between fractal and nonfractal networks since it is not invari-
ant under renormalization.

Here, we study properties of fractal and nonfractal net-
works, including both models and real networks. We focus
on one important characteristic of networks, the betweenness
centrality �C�, �20–23�, defined as

C�i� � �
j,k

� j,k�i�

� j,k
, �2�

where � j,k�i� is the number of shortest paths between nodes j
and k that pass node i and � j,k is the total number of shortest
paths between nodes j and k.

The betweenness centrality of a node is proportional to
the number of shortest paths that go through it. Since trans-
port is more efficient along the shortest paths, nodes of high
betweenness centrality C are important for transport. If they
are blocked, transport becomes less efficient. On the other
hand, if the capacitance of high-C nodes is improved, trans-
port becomes significantly better �24�.

Here we show that fractal networks possess much lower
correlation between betweenness centrality and the degree of
a node compared to nonfractal networks. We find that in
fractal networks even small-degree nodes can have very
large betweenness centrality while in nonfractal networks
large betweenness centrality is mainly attributed to large-
degree nodes. We also show that the betweenness centrality
distribution in SF fractal networks obeys a power law. We
study the effect of adding random edges to fractal networks.
We find that adding a small number of random edges to
fractal networks significantly decreases the betweenness cen-
trality of small-degree nodes. However, adding random
edges to nonfractal networks has a significantly smaller ef-
fect on the betweenness centrality.
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We also analyze the transition from fractal to nonfractal
networks by adding random edges and show both analyti-
cally and numerically that there exists a crossover length �*

such that for length scales ���* the topology of the network
is fractal while for ���* it is nonfractal. The crossover
length scales as �*� p−1/dB, where p is the number of random
edges per node. We analyze seven SF model networks and
four real networks.

The four real networks we analyze are the network of
pharmaceutical firms �25�, an Internet network at the AS
level obtained from the Distributed Internet Measurements &
Simulations �DIMES� project �26,27�, protein interaction
network �PIN� of yeast �28,29�, and WWW network of Uni-
versity of Western Sydney �30�. The pharmaceutical network
is the network of nodes representing firms in the worldwide
pharmaceutical industry, and the links are collaborative
agreements among them. The Internet network represents a
sample of the internet structure at the autonomous systems
�AS� level. The PIN of yeast represents proteins as nodes and
interactions between them as links between nodes. The
WWW network of University of Western Sydney represents
web pages �nodes� targeted by links from the uws.edu.au
domain. Basic properties of the considered networks are
summarized in Table I.

The paper is organized as follows: in Sec. II, we study
correlation between the betweenness centrality and degree of
nodes, and we compare fractal and nonfractal networks. We
analyze the betweenness centrality variance �C�k� of nodes
of the same degree k and introduce a correlation coefficient R
that describes the strength of betweenness centrality degree
correlation. We also analyze the betweenness centrality dis-
tribution P�C� of several model and real networks. In Sec. III
we study the transition from fractal to nonfractal networks
with randomly added edges. Appendix A provides a short
summary of the fractal growth model introduced in �14�.
Appendix B discusses the box-covering method and its ap-
proximations.

II. BETWEENNESS CENTRALITY OF FRACTAL AND
NONFRACTAL NETWORKS

It is generally accepted �31� that in many networks nodes
having a larger degree also have a larger betweenness cen-
trality. Indeed, the larger the degree of a node, the larger the
chance that many of the shortest paths will pass through this
node; the chance of many shortest paths passing a low-
degree node is presumably small. Here we show that this is
not the case for fractal SF networks. As seen in Fig. 1�a�
small-degree nodes in fractal SF networks have a broad
range of betweenness centrality values. The betweenness
centrality of many small-degree nodes can be comparable to
that of the largest hubs of the network. For nonfractal net-
works, on the other hand, the degree and betweenness cen-
trality of nodes are strongly correlated.

To demonstrate the difference in the relation between de-
gree and betweenness centrality in real networks we compare
original networks with their random �uncorrelated� counter-
parts. We construct the random counterpart network by re-
wiring the edges of the original network, yet preserving the
degrees of the nodes and enforcing its connectivity. As a
result we obtain a random network with the same degree
distribution which is always nonfractal regardless of the
original network. As seen in Fig. 1�b�, the betweenness-

TABLE I. Properties of the networks studied in the paper. Here
N is the number of nodes, E the number of edges, � the degree
distribution exponent �P�k��k−��, and dB is the fractal dimension.
The notation of model networks is explained in Appendix A. We
consider only the largest connected cluster of the network if the
original network is disconnected.

Network name N E � dB Category

Model 1nf�7,4,2,1�a 16384 16383 3.0 N/A Nonfractal

Model 2nf�6,6,2,1� 46656 46655 3.6 N/A Nonfractal

Model 3nf�8,3,2,1� 6561 6560 2.6 N/A Nonfractal

Model 1f�7,4,2,0� 16384 16383 3.0 2.0 Fractal

Model 2f�6,6,2,0� 46656 46655 3.6 2.6 Fractal

Model 3f�8,3,2,0� 6561 6560 2.6 1.6 Fractal

SF Model 2668 3875 2.5 N/A Nonfractal

Uni West Sydney WWW 2526 4097 2.2 2.1 Fractal

Pharmaceutical �25� 6776 19801 2.4 N/A Nonfractal

Yeast �28� 1458 1948 2.4 4.2 Fractal

AS Internet �26� 20556 62920 2.1 N/A Nonfractal

aSee Appendix A for abbreviation.

FIG. 1. �Color online� �a� Betweenness centrality versus degree
correlation profiles of fractal and nonfractal network models. Note
the broader range of betweenness centrality values of small-degree
nodes of fractal network compared to that of the nonfractal net-
work. �b� Betweenness centrality versus degree correlation profiles
of Uni Western Sydney WWW �fractal� network and its random
counterpart. The randomly rewired network is nonfractal. Between-
ness centrality and the degree are correlated much more strongly in
nodes of the random rewired network.
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centrality–degree correlation of a random network obtained
by rewiring edges of the WWW network is much stronger
compared to that of the original network. Ranges of be-
tweenness centrality values for a given degree decrease sig-
nificantly as we randomly rewire edges of a fractal SF net-
work.

The quantitative description of the betweenness-
centrality–degree correlation can be given by the analysis of
the betweenness centrality variance �C�k� attributed to nodes
of specific degree k. Larger values of the variance �C�k�
mean weaker correlations between the degree and between-
ness centrality of a node since nodes of the same degree have
larger variations in betweenness centrality values. As seen in
Fig. 2, in a region of small degree, the betweenness centrality
variance �C�k� of fractal networks is significantly larger than
that of their respective randomly rewired counterparts which
are not fractals. At the same time the betweenness centrality
variance of nonfractal networks is comparable or even
smaller than that of the corresponding randomly rewired net-
works. Thus, the betweenness centrality of nodes of fractal
networks is significantly less correlated with degree than in
nonfractal networks.

This can be understood as a result of the repulsion be-
tween hubs found in fractals �14�: large-degree nodes prefer
to connect to nodes of small degree and not to each other.
Therefore, the shortest path between two nodes must neces-
sarily pass small-degree nodes which are found at all scales
of a network. Thus, in fractal networks small-degree nodes
have a broad range of values of betweenness centrality while
in nonfractal networks nodes of small degree generally have
small betweenness centrality. Betweenness centralities of

small-degree nodes in fractal networks significantly decrease
after random rewiring since the rewired network is no longer
fractal. On the other hand, centralities of nodes in nonfractal
networks either do not change or increase after rewiring of
edges.

As seen in Fig. 1�b�, the main difference in the
betweenness-centrality–degree correlation between fractal
and nonfractal SF networks reveals itself in the dispersion of
betweenness centrality values attributed to nodes of a given
degree, rather than in the average betweenness centrality
values.1 So in order to characterize and quantify the overall
betweenness-centrality—degree correlation we propose a
correlation dispersion coefficient

R =

�
k

�C�k�p�k�

�
k

�C
* �k�p�k�

, �3�

where �C�k� and �C
* �k� are the betweenness centrality vari-

ances of the original and randomly rewired networks, respec-
tively, and p�k� is the degree distribution of both networks.
The dispersion coefficient R is the ratio between the mean
variance ��C�k�	 of the original network and ��C

* �k�	 is the

1Due to the fact that the average betweenness for a given degree
does not change much, the Pearson coefficient, as a traditional mea-
sure of correlation, is not suitable to characterize the differences in
betweenness-centrality–degree correlation of fractal and nonfractal
networks. This is because the Pearson coefficient is dominated by
average values of the betweenness centrality for a given degree.

FIG. 2. Betweenness centrality variance �C calculated for both original and rewired networks as a function of node degree k. Every point
of the plot corresponds to the betweenness centrality variance calculated for nodes of the same degree k and normalized over the corre-
sponding average betweenness centrality value �C	 of the original network. Each of the plots includes the value of the betweenness-
centrality–degree correlation dispersion coefficient R; see Eq. �3�. Note that small-degree nodes of fractal networks—fractal model 3f �a�,
yeast �c�, and Uni Western Sydney WWW �e�—have significantly larger variance of betweenness centrality compared to their randomly
rewired counterparts which are nonfractals. On the other hand, small-degree nodes of the nonfractal networks—nonfractal model 3nf �b�,
pharmaceutical �d�, and AS internet �f�—have betweenness centrality variance comparable or even smaller than that of their randomly
rewired counterparts. As a result R�1 for fractal networks and R�1 or R
1 for nonfractal networks. Thus, betweenness-centrality–degree
correlation is weaker in fractal networks than in nonfractals.
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mean variance of the randomly rewired network. We note
that fractal SF networks have larger values of the between-
ness centrality variance than their randomly rewired counter-
parts and, therefore, have correlation dispersion coefficient
R�1. On the other hand, �C�k� of the nonfractal SF net-
works is close or smaller than that of their random counter-
parts �C

* �k� which result in values of the correlation disper-
sion coefficient R
1 or R�1. The calculated values of the
correlation dispersion coefficient R for the networks we con-
sidered in the paper are summarized in Table I.

The probability density function �PDF� of betweenness
centrality has been studied for both Erdös-Rényi �5,6� and
SF �11� networks. It was found that for SF networks the
betweenness centrality distribution satisfies a power law

P�C� � C−�, �4�

with typical values of � between 1 and 2 �32–34�. Our stud-
ies of the betweenness centrality distribution support these
earlier results �Fig. 3�. We find that � increases with dimen-
sion dB of analyzed fractal networks. In the case of nonfrac-
tal networks, where dB=�, estimated values of � seem to be
close to 2.

An analytic expression for � can be derived for SF fractal
tree networks by using arguments similar to those used in
�34� to find � for the minimum spanning tree �MST�. Con-

sider a fractal tree network of dimension dB. A small region
of the network consisting of n nodes will have a typical
diameter ��n��n1/dB �35�. Nodes in this region will be con-
nected to the rest of the network via ��n� nodes. Thus, the
betweenness centrality of those nodes is at least n. Since the
number of regions of size n is N /n, the total number of nodes
with betweenness centrality C�n in the network is

��C � n� � ��n�
N

n
� n1/dB−1. �5�

Thus, the number of links with betweenness centrality n is

P�C� = �� � ��C + 1� − ��C� � C1/dB−2. �6�

Using Eq. �4� we immediately obtain

� = 2 −
1

dB
. �7�

Thus, Eq. �7� shows that � increases with dB in agreement
with Fig. 3. For nonfractal networks dB→� and �=2. So
nonfractal networks consist of a relatively small number of
central nodes and a large number of leaves connected to
them. On the other hand, in fractal networks, especially in
those of small dimensionality, due to the repulsion between
hubs, betweenness centrality is distributed among all nodes
of a network. Analysis of the box-covering method as a frac-
tal test for some fractal and nonfractal networks studied here
is shown in Fig. 4.

III. CROSSOVER SCALING IN FRACTAL NETWORKS

We now study the behavior of fractal and nonfractal net-
works upon adding random edges. We analyze the crossover
from fractal to nonfractal structure when random edges are
added. To this end, we study the minimal number of boxes,
NB, of size �B needed to cover the network as a function of
�B as we add random edges to the network. Figures 5�a� and
5�b� show that the dimension dB of the networks does not
change. However, the network remains fractal with a power-
law regime NB��−dB only at length scales � below �*, a
characteristic length which depends on p. For ���*, the
network with added random edges behaves as nonfractal
with exponential decay NB�exp�−� /�*�. The crossover
length �* separating the fractal and nonfractal regions de-
creases as we add more edges �see Figs. 5�a� and 5�b��. We
employ a scaling approach to deduce the functional depen-
dence of the crossover length on the density of added short-
cuts p. We propose for NB the scaling ansatz

NB��,p� � �*�p�−dBF� �

�*�p�� , �8�

where

F�u� � 
u−dB, u 	 1,

exp�− u� , u 
 1.
� �9�

With appropriate rescaling we can collapse all the values of
NB�� , p� onto a single curve �see Figs. 5�c� and 5�d��. The
crossover length �*�p� exhibits a clear power-law depen-

FIG. 3. Betweenness centrality distributions of �a� fractal model
3f and WWW network �fractal� and �b� nonfractal model 3nf and
pharmaceutical network �nonfractal�. The data have been binned
logarithmically. Both fractal and nonfractal networks exhibit a
power-law range of the betweenness centrality distribution consis-
tent with P�C��C−�. The measured betweenness centrality distri-
butions �data points� are in good agreement with the analytically
obtained formula �=2−1/dB represented by the straight lines. In
nonfractal networks we expect �→2 since dB→�.
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dence on the density of random shortcuts �Fig. 5�e��,

�*�p� � p−�. �10�

We next argue that asymptotically, for large N,

� = 1/dB. �11�

When a fractal network with N nodes and E edges has addi-
tional �	N random edges, the probability of a given node i
to have a random link is Pi=2� /N. The mass of the cluster
within a size � in a fractal network is MC��df. The prob-
ability of MC��� possessing a random edge is P
= �2� /N�MC. Thus, at distances � for which �2� /N�MC	1
we are in the fractal regime. On the other hand, large dis-

tances � for which �2� /N�MC
1 correspond to the nonfrac-
tal regime. Thus, the crossover length �* corresponds to
�2� /N�MC��*��1, which implies �*��−1/dB or �*� p−1/dB,
where p�� /N. Note that the values measured for the two
fractal networks, shown in Fig. 5�e�, �=0.46�dB=1.9� and
�=0.39�dB=2.3�, are slightly smaller than the expected
asymptotic values, which we attribute as likely to be due to
finite-size effects.

IV. DISCUSSION AND SUMMARY

We have shown that node betweenness centrality and the
node degree are significantly less correlated in fractal SF
networks compared to nonfractal SF networks due to the
effect of repulsion between hubs. The betweenness centrality
distribution in SF networks obeys a power law P�C��C−�.
We derived an analytic expression for the betweenness cen-
trality distribution exponent �=2−1/dB for SF fractal trees.
Hence, fractal networks with smaller dimension dB have
more nodes with higher betweenness centrality compared to
networks with larger dB. The transition from fractal to non-
fractal behavior was studied by adding random edges to the
fractal network. We observed a crossover from fractal to
nonfractal regimes at a crossover length �*. We found both
analytically and numerically that �* scales with density of
random edges p as �*� p−� with �=1/dB.
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APPENDIX A: A FRACTAL GROWTH MODEL

A growth model of fractal SF networks was first intro-
duced by Song et al. �14�. In the core of the growth model
lies the network renormalization technique �13,14�: A net-
work is covered with NB boxes of size �B. Subsequently,
each of the boxes is replaced by a node to construct the
renormalized network. The process is repeated until the net-
work is reduced to a single node. The fractal growth model
represents the inverse of this renormalization process. The
growth process is controlled by three parameters n, m, and e
so that

N�t� = nN�t − 1� , �A1�

ki�t� = mki�t − 1� , �A2�

where N�t� and ki�t� are, respectively, the number of nodes of
the network and degree of node i at time t. The parameter e
is the probability of hub attraction e�Ehubs /E. In the present
study we limit our consideration to two distinct types of
models: fractal �e=0� and nonfractal �e=1�. At each growth
step we run through all existing nodes. With probability e
we increase the degree of a given node by attaching
�m−1�ki�t−1� new nodes �this corresponds to hub attrac-
tion�. With probability 1−e we grow �m−1�ki�t−1�−1 nodes

FIG. 4. Box-covering method applied to �a� models 1f, 2f, 1nf,
and 2nf and �b� real networks WWW, pharmaceutical, and AS In-
ternet. The log-log plots of the number of boxes, NB, needed to
cover the network as a function of their size lB show clear “power-
law” behavior for the fractal networks. The calculated dimensions
are presented in Table I. �c� The calculated dimension of fractal
model 1f for different generations g of the same fractal model net-
work. Calculated value of dB approaches the expected value �dB

=2� as the number of generations increases.
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using the remaining node to repel hubs. Thus, the entire
growth process can be summarized as follows �see Fig. 6�.

�i� Start with a single node.
�ii� Connect �m−1�ki�t−1� extra nodes to each node i to

satisfy Eq. �A2�. With probability 1−e use one of the new
nodes to repel node i from the central node.

�iii� Attach the remaining number of nodes to the network
randomly to satisfy Eq. �A1�.

�iv� Repeat steps �ii� and �iii� for the desired number of
generations g.

The networks constructed in this way are SF with

FIG. 5. �Color online� �a�, �b�
Box-covering analysis of fractal
models 1f and 2f with added ran-
dom edges. Networks remain frac-
tal for length scales smaller than
certain crossover length �*. Above
�* the networks are no longer
fractals. The crossover length �*

becomes smaller as we add more
edges. �c�, �d� Data collapse of
NB�� , p� for the two fractal mod-
els. Appropriate rescaling NB��B�
→a�p�NB��B /b�p�� allows one to
collapse all the values of NB�l , p�
onto a single curve. �e� The rescal-
ing function b�p���* for fractal
models 1f and 2f as a function of
p shows a power-law scaling of
the crossover length �*� p−�. Cal-
culated exponents are �1=0.46
and �2=0.39, respectively. Calcu-
lated values are slightly smaller
than the expected values due to
finite-size effects.

FIG. 6. �Color online� Constructing �a� nonfractal and �b� fractal networks with parameters n=6, m=3. The key difference between a
fractal and nonfractal model is “repulsion between hubs.” In fractal networks nodes of large degree prefer to connect to nodes of small
degree and not to nodes of large degree.
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� = 1 +
ln n

ln m
. �A3�

Fractal networks have a finite dimension

dB =
ln n

ln 2
. �A4�

For derivations of Eqs. �A3� and �A4� see Ref. �14�.
Here we refer to network models using a set of numbers

�g ,n ,m ,e�. For example, the set �4, 5, 3, 0� should read as a
fourth-generation �g=4� fractal �e=0� network with n=5 and
m=3. According to the above growth process for this ex-
ample �4, 5, 3, 0�, N=ng=625, E=N−1=624, �=1
+ln n / ln m=2.46, and dB=ln n / ln 2=2.32.

APPENDIX B: MODIFIED BOX-COUNTING METHOD

The box-counting method is used to calculate the mini-
mum number of boxes, NB, of size �B needed to cover the
entire network of N nodes. The size of the box, �B, imposes
a constraint on the number of nodes that can be covered: all
nodes covered by the same box must be connected and the
shortest path between any pair of nodes in the box should not
exceed �B. The most crucial and time-consuming part of the
method is to find the minimum out of all possible combina-
tions of boxes. In the present study we use an approximate
method that allows to estimate the number of boxes rather
fast.

�i� Choose a random node �seed� on the network.
�ii� Mark a cluster of radius �B centered on the chosen

node.

�iii� Choose another seed on the unmarked part of the
network.

�iv� Repeat steps �ii� and �iii� until the entire network is
covered. The total number of seeds, N�, is an estimate of the
required number of boxes, NB.

We stress that the estimated number of clusters, N�, is
always less than NB, the minimal number of boxes needed to
cover the entire network. Indeed, the shortest path between
any two seeds is greater than the size of the box �B. Thus, a
box cannot contain more than one seed, and in order to cover
the whole network we need at least N� boxes.

Even though N� is always less or equal to NB, the estimate
may be good or poor based on the order we choose for the
nodes. In order to improve the estimation we compute many
times N� �typically 100–1000� and choose the maximum of
all N�.

Figures 4�a� and 4�b� demonstrate the application of the
modified box-counting algorithm to several fractal and non-
fractal networks. According to Eq. �1�, the dimensions of the
fractal networks are obtained by calculating the slope of the
NB��B� function in log-log format. The calculated dimen-
sions are slightly underestimated due to a finite-size effect of
the analyzed networks.

Figure 4�c� represents dB as a function of the inverse num-
ber of generations, g, of the model. As number of genera-
tions, g, increases the calculated dimension dB approaches
the value given by Eq. �A4�.

A similar algorithm was introduced in Ref. �16�. The au-
thors of this algorithm argue that it provides the same dimen-
sion of the network no matter how the boxes are chosen. In
our algorithm we intend to estimate not only the dimension
of the network but also the number of boxes. Thus, we are
seeking the maximum N� out of many realizations.
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